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Navigation in Time-Evolving Environments Based
on Compact Internal Representation: Experimental

Model
José Antonio Villacorta-Atienza and Valeri A. Makarov

Abstract—Near-range navigation in time-evolving environ-
ments requires anticipation of the possible changes in the external
world and appropriate adaptation of the agent’s behavior. The
recently introduced concept of Compact Internal Representation
(CIR) efficiently solves both problems simultaneously. CIRs
offer static maps for description of essentially time-evolving
situations. Here we discuss implementation of the concept in a
neural network that enables protocognitive navigation in different
dynamic situations observed in the external world. Then we
employ this neural network for robot navigation in real time-
evolving environments. We show how CIRs can be generated,
learned, memorized, and quickly retrieved from the memory for
fast decision-making and selection of optimal routes to thetarget.
Experimental results confirm that the CIR-based protocognitive
network provides the agent with a reliable, fast, and flexible
manner for dealing with dynamic situations.

I. I NTRODUCTION

PROTOCOGNITION brings together the primary cognitive
abilities required for an intelligent motor interaction with

the external world [1]. Even simplest animals can exhibit
surprisingly efficient behaviors in complex time-evolvingenvi-
ronments (see e.g. [2], [3]). There exists growing experimental
evidence that such fascinating abilities are based on effective
Internal Representation (IR) of the external world [4]–[7]. The
IR makes possible mental simulations, goal planning, testing
of alternative behaviors and, as a consequence, an intelligent
decision-making [8]. However the mechanisms behind the IR
are barely understood both from theoretical and experimental
viewpoints [9], [10].

Perception of the environment implies concurrence of di-
verse sensory modalities that continuously provide complex
information about the external world, which must be properly
reduced and structured to create useful IR. IR of static situa-
tions can be thought about as an abstract “copy” of the external
world built from the sensory information obtained at any time-
instant. For the purpose of navigation an agent can just project
near-range static objects (obstacles and targets) into a mental
map and then plan a route to a target. This approach, for
example, has been implemented in a neural network with
reaction-diffusion dynamics [11]. Then the potential field
established in the network under sensory drive is the IR of
the given situation.

IR of dynamic situations, i.e. when the environment evolves
in time (e.g. objects move in the arena), demands higher level
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abilities allowing to cope with spatiotemporal information.
Generalizing the static approach, one could generate a se-
quence of static IRs made for each time instant like frames in
a movie. This, however, has a number of internal pitfalls: from
the obvious increase (virtually infinite) of the memory capacity
required for description of the situation, to the ambiguous
dynamic treatment of essentially static information. To resolve
this problem a number of different approaches has been
proposed (for review see [12]): self-organizing neural networks
adaptable to dynamic changes in its environment [13], path
planning strategies based on changing potential fields [14],
recurrent neural networks applied to manipulators [15], and
biologically-inspired neural networks for planning obstacle
avoidance [16], among others.

Recently, for an efficient description of complex dynamic
situations we introduced the so-called concept of Compact
Internal Representation (CIR) [17], [18]. The idea behind CIR
is based on the modeling of the future and extracting, in a
special way, of events critical for the agent (e.g. potential
collisions with obstacles), which are then mapped into a
static pattern. Thus essentially time-evolving situationis com-
pacted into a static structure, which provides the information
necessary to reach the goal. This process takes place in
the agent’s “mind” and follows two stages implemented in
coupled neural networks. The Trajectory Modeling Neural
Network (TMNN) predicts the trajectories of the objects in
the agent’s environment. These trajectories are used by the
Causal Neural Network (CNN), which simulates all possible
agent’s movements according to the predicted evolution of the
situation and generates a static mental map (CIR) of collisions
with obstacles and targets. By using this map the agent can
successfully avoid obstacles in its environment and reach the
target.

In this work we discuss implementation of a protocognitive
network that permits generation, learning, and fast retrieval of
CIRs. We also extend the concept by including mobile targets.
Then we present the application of this neural network to
robot navigation in real time-evolving environments. We show
that CIRs can be learned and memorized for quick decision-
making and selection of optimal routes. Thus we show that
the CIR-based protocognitive network provides the agent with
a reliable, fast, and flexible manner for dealing with dynamic
situations.
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Fig. 1: Experimental setup for robot navigation experiments. A)
Roving robot equipped with WiFi interface aside of a 1e coin. B)
150 × 150 cm arena with four robots simulating the agent (arrow
shape), the obstacles (circular shapes), and the target (stripe). C) Top
view of a static situation (captured by a zenithal camera). The agent
has a goal to reach the target. Six consecutive frames marking the
agent’s positions are shown superimposed. D) Dynamic situation. A
collision occurs if the agent makes the decision from the initially
perceived visual information as in the static case (dots andarrows
mark positions and velocities, respectively).

II. EXPERIMENTAL SETUP

In order to study the problem of protocognitive near-range
navigation we built a setup (Figs. 1A and 1B) with roving
robots simulating an agent, one target, and two moving obsta-
cles in a white arena (150×150 cm). The programmable robots
(Moway, Minirobots S.L., Fig. 1A) were controlled through a
WiFi interface with customary written C# code managed by
Matlab (R2010b 64-bit, The MathWorks, Inc.) running on a
standard PC. In order to distinguish objects in the arena, black
cardboard figures were stuck over each robot (Fig. 1B): arrow-
shaped over the agent, circular shapes over the obstacles,
and a strip over the target. The visual information in the
arena were captured by a zenithal camera (Logitech QuickCam
Communicate STX). For object recognition we used the image
analysis routines from the Matlab Image Processing Toolbox.
The snapshots of the arena were taken at 50 Hz rate. Then all
black objects were identified in each frame. The objects were
differentiated by the size of black figures stuck over the robots,
and the displacement of centroids were used for tracking and
for determining positions, velocities, and accelerationsof the
objects.

Figures 1C and 1D show examples of static and dynamic
situations, respectively. Dots with arrows represent initial
positions and velocities of the objects in the arena: red forthe
agent, blue for the obstacles, and green for the target. In the
static environment (Fig. 1C) the visual information obtained at
the initial moment determines the agent’s motor decision. The
agent can move along a straight trajectory and easily reach the
target. In a similar but dynamic situation both obstacles cross
the agent’s path (Fig. 1D). The same agent’s behavior would
lead to a collision. Thus this situation requires from the agent
more sophisticated path planning based on the knowledge of

the state of the environment in the future. In the following
sections we shall show how the CIR concept can be used for
this purpose.

III. T RAJECTORYMODELING NEURAL NETWORK
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Fig. 2: Prediction of trajectories of moving objects. A) Sketch of a
recurrent neural network used for trajectory modeling. B) Learning
performance. Blue, red, and green triangles mark the training quality
with d = 95%, 99.5%, and 99.9%. Inset shows the trajectories used
for training the TMNN. C) Prediction of an experimental trajectory
at different levels of the learning quality, correspondingto triangles
in (B). D) Mean and standard deviation of the performance of the
TMNN in predicting trajectories of 100 objects for three different
values of the learning quality.

Generation of a CIR requires prediction (in the agent’s
mental timeτ ) of the trajectories of near-range objects in
the arena. This task is performed by the Trajectory Modeling
Neural Network. Figure 2A shows the implementation of the
TMNN. It consists of three recurrently coupled neurons with
external inputsξ(k) ∈ R

3 and outputsx(k + 1) ∈ R
3, where

k denotes discrete mental time (i.e.τ = kh, whereh is the
time step) [19]. The dynamics of the network is given by

x(k + 1) =

{
ξ(k), if |ξ(k)| > δ
Wx(k), otherwise

(1)

whereδ > 0 is the tolerance constant andW ∈ M3×3(R) is
the coupling matrix.

For the sake of simplicity we assume that trajectories of
all objects in the environment can be described by quadratic
functions of time. In order to train the TMNN to recognize
such routes we generated a set of 50 random trajectories (Fig.
2B, inset) and presented them to the network as external input
in the form ξ(k) = (x(k), v(k), a(k))T , i.e. the first three
dynamic moments of the trajectory. Then the interneuronal
couplings are updated according to

W (k + 1) = W (k)
(
I − εξ(k − 1)ξT (k − 1)

)

+εξ(k)ξT (k − 1)
(2)
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whereε > 0 is the learning rate.
Under proper learning rateε < ε∗, W converges to a

theoretical matrixW∞ [19]. The distance

d(k) = 100

(

1−
‖W (k)−W∞‖

‖W∞‖

)

(3)

is used to quantify the learning performance (Fig. 2B). Indeed,
under training the interneuronal couplings quickly converged
(in less than 50 cycles) to the theoretically predicted values.
For further analysis we selected the coupling matricesW95,
W99.5, andW99.9 corresponding to different learning quality
to d = 95%, 99.5%, and99.9%, respectively.

Once the training process is deemed finished, the TMNN
can be used to predict the object’s trajectories in the arena.
The first three instants of the object’s movement are captured
and introduced in the TMNN as an internal input consisting of
initial position, velocity, and acceleration of the object. Then
the TMNN generates the following object’s trajectory. Figure
2C shows a top-view of a robot in the arena following the
black curve and trajectories produced by the TMNN for three
different values of the learning quality.

In order to quantify the TMNN prediction performance
we used the Fréchet distancedF (c, c∗) [22] measuring the
similarity between the original robot trajectoryc and the
trajectory predicted by the TMNNc∗. Then the prediction
performance is

P (c, c∗) = 100 (1− dF (c, c
∗)/l(c)) (4)

wherel(c) denotes the length of the curvec. Figure 2D shows
the statistics of the prediction performance for differentvalues
of the learning quality obtained for a set{ci}100i=1 of random
trajectories. The learning quality achieved in about 50 training
cycles is enough to obtain practically 100% fidelity in the
prediction of trajectories by the TMNN.

IV. CONCEPT OFCOMPACT INTERNAL REPRESENTATION

Let us briefly recall how a CIR of a dynamic situation can
be created and then used for navigation [17], [18]. CIR is
generated by a reaction-diffusion process taken place in the
CNN, a 60× 60 square lattice, described by:

ṙij = qij (H(rth − rij) [f(rij)− vij ] + d∆rij − rijpij)
v̇ij = (rij − 7vij − 2)/25

(5)
where dots represent derivatives in respect to the mental time
τ , ∆ is the discrete Laplacian,d is the diffusion constant,
f(r) = (−r3 + 4r2 − 2r − 2)/7, and H is the Heaviside
function. Functionsqij(τ) and pij(τ) (equal to one and
zero, respectively, at the beginning of the simulation) will be
described below.

Let us now consider a dynamic situation similar to that
shown in Fig. 1D. The agent (Fig. 3A, blue circle) should
move with constant velocity and reach the mobile target (red
area) avoiding the moving obstacles (black areas). The initial
conditions, i.e. objects’ positions, velocities, and accelerations,
are supplied to the TMNN that simulates the obstacles and
target’s trajectories (see Sect. III).

Simultaneously in the CNN a circular wavefront is initiated
at the agent’s location (Fig. 3B). Propagation of the wavefront
in the lattice mentally simulates all possible positions ofthe
agent at each moment in the virtual future. Figures 3B-3G
show sequential snapshots of the CNN state. Forτ = τ1 the
first contact of the wavefront and one of the (moving) obstacles
occurs (Fig. 3B). This contact marks the place where the
agent would collide against the obstacle if the corresponding
trajectory were performed in the arena. The cells of the CNN
{(i∗, j∗)} corresponding to those locations are frozen, i.e.
qi∗,j∗(τ) = 0 for τ ≥ τ1. They constitute an effective obstacle,
i.e. a static structure containing the critical spatiotemporal
information concerning potential collisions between the agent
and the obstacle (Fig. 3D, area filled in black). We note that
in general an effective obstacle has a shape different from
the shape of the corresponding real obstacle. Therefore the
problem of avoidance of moving obstacles in the arena is
reduced to the avoidance of static effective obstacles created
in the mental map.

In the same fashion interaction between the wavefront and
the (mobile and immobile) targets will produce effective tar-
gets. Figures 3E-3G show how cells, where the wavefront and
the virtual target collide, are frozen by settingpi∗,j∗(τ) = 1
for τ ≥ τ4 in the network (5) and form an effective target (Fig.
3G, area filled in red). We note that in general one target can
create several effective targets, which correspond to different
strategies for target catching.

In the region behind the wavefront passive diffusion (con-
trolled by the Heaviside term in (5)) creates a static potential
field including the agent position and the effective obstacles
and targets. This potential field, i.e. a pattern{r∗ij}, is the
CIR for the considered dynamic situation (Fig. 3H). This
field can be used to draw possible trajectories from the initial
agent’s position to the effective targets by the gradient descend
method. Following such trajectories in the arena ensures
avoiding obstacles and catching the target.

A B C D
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Fig. 3: Generation of Compact Internal Representation of a dynamic
situation. A) Initial configuration of the arena. The agent,target, and
obstacles are shown in blue, red, and black, respectively, arrows mark
their velocities. B)-G) Sequential snapshots of the state of CNN (the
pattern{rij(τ )}60i,j=1 is plotted) showing the creation of effective
target and obstacles (red and black filled areas, respectively). Virtual
positions of the target and obstacles are shown by contour shapes.
H) CIR of the considered dynamical situation. The shortest trajectory
to the effective target (and thus to the target moving in the arena) is
shown by blue curve.
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V. PROTOCOGNITIVE NAVIGATION BASED ON CIR

As discussed in the previous section, CIR collapses the time
dimension of a dynamic situation by mapping only the critical
events (virtual collisions and effective targets) into a static
map. Therefore CIR of a dynamic situation is a static pattern
(i.e. a matrixMn×n(R)), which can be learned, stored in
memory, retrieved, compared, etc. Thus we can easily manage
different realistic experiences in a fast and reliable manner.

Figure 4 shows how such protocognitive abilities can be
implemented in a neural network. Protocognition begins with
perception of the situation in which the agent is involved.
For this purpose in our experimental setup we used visual
information from a zenithal perspective of the arena. The
perceived situation (a vectors ∈ R

m consisting of positions,
velocities, and accelerations of all objects) is then supplied to
“conscious” and “subconscious” pathways.

The output of both pathways is the CIR (i.e. ann × n
matrix), which contains the required information to solve the
navigation problem. The standard gradient descent method
provides a trajectory that, transformed in motor orders, permits
the agent to reach the target safely (Fig. 4, red curve in
the arena). The conscious pathway directly produces CIR for
a given sensory vectors. This CIR is also fed back into
the subconscious pathway where a recurrent neural network
establishes associations betweens and the CIR. Then if the
agent faces one of the learned experiences it could recover
the corresponding CIR in a fast and reliable way. In general
subconscious pathway works much faster than the conscious
one but requires previous learning. Thus the protocognitive
agent requires training for optimal operations in complex
environments.

Fig. 4: Block-scheme of CIR-based protocognitive network.

A. Conscious Pathway

The perception of a new situation forces the agent to
understand it by “consciously” creating the correspondingCIR
(Fig. 4, red box). This process, detailed in Sect. IV, has been
implemented for robot navigation.

In order to illustrate the capability of CIR to represent
dynamic situations three different time-evolving environments
were considered (Figs. 5A-5C). The target is immobile in the
simplest situationS1, whereas in situationsS2 andS3 it moves
in different directions. In all three situations two obstacles
cross the agent’s path to the target.

Zenithal camera captures 1 s initial interval of the evolution
of the robots representing obstacles and target. These initial
conditions (sensory vector) are used to mentally simulate the
target’s and obstacles’ trajectories (Sect. III). This information
serves as basis for generating the CIR as described in Sect.
IV and illustrated in Fig. 3 forS2.

Figures 5D-5F show the CIRs forS1, S2, andS3, respec-
tively. Note the different shapes and locations of effective tar-
gets and obstacles reflecting distinct dynamical circumstances.
The obtained CIRs were used to trace a set of suitable trajec-
tories by means of the standard gradient descend method. Blue
pathways in Figs. 5D and 5F represent the shortest trajectories
solving the corresponding navigation problem for situations
S1 andS3, respectively. The CIR in Fig. 5E (S2) admits two
trajectories of about the same length. The difference between
them is the distinct collision risk to reach the moving target.
Nevertheless both trajectories in mental maps shown in Figs.
5D-5F lead the agent to the target with no collisions against
obstacles.

D E F

A B C

Fig. 5: Navigation based on CIR in three different time-evolving
situationsS1, S2, and S3. A)-C) Initial configurations for each
dynamic situation. Arrows indicate the initial velocitiesand directions
of the objects in the arena. D)-F) The corresponding CIRs created
by the “conscious” pathway. Blue curves show trajectories to the
effective target.

B. Subconscious Pathway

When the agent faces a familiar, i.e. previously learned,
situation the visual information,s, is processed by the sub-
conscious pathway (Fig. 4, blue box). The neural network
implementing the subconscious pathway retrieves from the
associative memory the CIR corresponding to the sensory
information. The general RNN introduced in Sect. III (Fig. 2A)
can also learn static patterns [19]–[21]. Since CIRs after all
are static patterns linked to specific initial sensory information
(s ∈ R

m) the same RNN but with higher number of neurons
can implement a suitable associative memory.

We shall call an experience the union of the initial sensory
information about a dynamic situations ∈ R

m and the
respective CIR. We ordered each CIR, i.e. a static 2D pattern
{r∗ij}

n
i,j=1, into a 1D vectorc ∈ R

n2

. Then each experience
is a composite vector

a = (c, s)T ∈ R
n2+m
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simultaneously describing the situation and the corresponding
CIR. Finally the associative memory is a recurrent neural
network shown in Fig. 2A with(n2 + m) neurons. This
network first goes through the learning and then can be used
for retrieval of previously learned CIRs.

1) Learning Phase:Learning phase is implemented though
sequential presentations to the RNN of a set ofp experiences
{ai}

p
i=1. At each learning stepk the network is exposed to

one of the composite vectorsai and the coupling matrix is
updated according to

W (k + 1) = W (k)
(
I − εξ(k)ξT (k)

)
+ εξ(k)ξT (k) (6)

whereε > 0 is again the learning rate andξ(k) ∈ {ai}
p
i=1 is an

element from the set of experiences. We note that although the
memory RNN and TMNN have the same structure the learning
rule (6) differs from (2). Earlier we have shown that this
learning process converges [19]. Theoretically the associative
memory can store up ton2 +m experiences.

2) Retrieval Phase:Once the learning phase has been
finished the RNN can be used to associate new sensory
informations with one of the previously learned experiences
{ai} to extract the corresponding CIRc. This is achieved by
presenting to the RNN (and maintaining during the retrieval
process) the sensory part of one of the learned experiences,
say l-th. Then the network activation is given by

ξ(k) = (0, 0, . . . , 0
︸ ︷︷ ︸

n2

, sl)
T k ≥ 0

Consequently the lastm neurons in the RNN have no dynam-
ics: xn2+1,...,n2+m(k) = sl, k ≥ 0, while the others follow
the linear map:

y(k + 1) = W ∗y(k) +B,

whereW ∗ = (w∗

ij)
n2

i,j=1 is a part of the coupling matrix after

learning andB =
∑n2+m

j=n2+1 w
∗

ijsl;j (heresl;j means thej-th
element of thel-th vector). It has been proven that following
this scheme the memory completes the missing part ofal and
hence retrieves the stored CIR [18].

C. Numerical Simulations of the Associative Learning

Success of the navigation in dynamic situations depends on
the velocity of retrieval and quality of CIRs, and hence on the
performance of the associative memory.

To simulate the process of learning and retrieval we used the
three dynamic situationsS1, S2, andS3 shown in Figs. 5A-5C
and the corresponding CIRs (Figs. 5D-5F) generated by the
conscious pathway. Then we composed the experience vectors
a1, a2, anda3 and presented them several times in arbitriry
order to the agent for learning, i.e. for making associations
in the RNN modeling the memory (Fig. 4). After learning
we examined how the agent solves the navigation problem
by presenting each one of the three dynamic situations and
studying the retrieved CIRs.

Figure 6 illustrates the results of CIR retrieval for each
dynamic situation (columns) after 2, 6, 70, and 220 training
cycles (rows). Having passed only two learning cycles is

insufficient for navigation, no trajectory to the target canbe
traced. CIRs retrieved after 6 training cycles reveal mixtures
of the original CIRs and also cannot be used for tracing
correct trajectories to the target. Thus at the beginning of
the training the agent tends to mess different experiences and
as a consequence it cannot successfully solve the navigation
problem. Keeping training, the quality of CIRs is refined
(Fig. 6, Ntr = 70 cycles) and after 220 training cycles the
CIRs retrieved from the memory are practically identical to
the original CIRs (compare Fig. 6, bottom row vs Figs. 5D-
5F). Thus the memorization of different experiences converges
quite rapidly and the subconscious pathway can finally provide
real benefit. Indeed, the “conscious” processing of a dynamic
situation in a standard PC lasts around 250 s, while the
subconscious pathway provides the same CIR in less than
4.5 s. These numbers can be significantly reduced by using
parallel multicore calculations or hardware implementation
[23], however their ratio (50 folds) will keep constant.

N
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0
N

tr
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 2
2

0
N
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 2

2
retriev. S

3
retriev. Sretriev. S

1

Fig. 6: Associative learning of experiences. Each experience, i.e. the
sensory informations1,2,3 and the CIRsc1,2,3 corresponding to the
dynamic situationsS1,2,3 (Fig. 5), has been learned and then retrieved
from the memory. Rows correspond to retrieval afterNtr = 2, 6, 70
and 220 learning cycles.

D. Experimental Verification of Protocognitive Navigation

Let us now present experimental results for the situations
shown in Figs. 5A-5C. Once the sensory information of a spe-
cific situation has been processed and the corresponding CIR
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has been obtained (either by the conscious or by the subcon-
scious pathway), the obtained trajectories are transformed into
motor commands for the agent. Then all robots simulating the
agent, the target, and obstacles (Fig. 1B) are simultaneously
activated. For each situation the zenithal camera capturesthe
trajectory executed by the agent to compare it with the pathway
obtained from the CIR (Figs. 5D-5F).

1) Conscious Pathway:Figures 7A-7C show navigation in
the dynamic situationsS1, S2, and S3, respectively. In all
situations the agent successfully caught the target and avoided
obstacles1. The reliability of this experimental procedure is
quantified by comparing theoretical{Ti}

4
i=1 and experimental

{Ci}
4
i=1 trajectories using the measure (4). We obtained

〈P (Ti, Ci)〉 = 2.6% with standard deviation 0.18%.
Figures 7D shows statistical data for twelve experiments.

We quantified the minimal experimental distance from the
agent to the obstacles related to the agent’s size. This measure
describes the safeness of the agent’s movements. In average
the agent passes no closer than 1.5 agent’s size to the obstacles,
which is sufficient for most applications. The achievement
of the goal is quantified by the minimum distance between
the agent and the target. Note that the theoretical distancein
this case is equal to zero by construction. The most important
source of experimental variability in this measure is the error
in robots’ initial positions, orientations, and velocities in each
navigation experiment. Nevertheless we observe high level
of success of protocognitive navigation. The average agent
proximity to the target is below 30% of the robot’s size, which
is again acceptable for most of applications.
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Fig. 7: Robot navigation in dynamic situations based on CIR.
A)-C) Superimposed sequence of snapshots (last frame is shown
darker) for situations shown in Fig. 5. Blue curves show theoretical
trajectories and red curves mark the robot pathways. D) Statistical
measures of the navigation performance. Left bars represent means
and standard deviations for the minimal distance between the agent
and the obstacles (trajectory safeness). Right bars correspond to the
final distance to the target (goal achievement). The distance is given
in relative units in respect to the agent’s size.

1Videos with robot experiments and numerical simulations can be found at
http://www.mat.ucm.es/∼vmakarov/research.php.

2) Subconscious Pathway:The subconscious processing
requires a proper learning of the experiences. Figure 8A
shows the CIR for the situationS1 retrieved from the memory
after 6 training cycles. Above we showed (Fig. 6) that the
CIR obtained at earlier stages of the learning provides fake
effective obstacles and targets. Indeed two trajectories obtained
from this CIR (Fig. 8A, blue lines) lead the agent to such a
fictitious target, i.e. the agent fails to catch the target. Figure
8B shows experimental trajectories performed by the robot in
these conditions. In both cases the robot avoids the obstacles
presented in the arena, however, it does not reach the target
staying in the right bottom corner. In accordance with our
numerical results, at advanced learning stages (i.e. after200
training cycles) the robot retrieves from the memory high
quality CIR and hence follows correct trajectory leading to
the target (Fig. 8C).

A B C

Fig. 8: Robot navigation using subconscious pathway. A) CIR
corresponding to the situationS1 (Fig. 5) retrieved from memory
after 6 training cycles. The obtained trajectories (blue curves) go to
the fake target, i.e. the agent does not catch the target. Redcurve
shows the correct trajectory corresponding to a CIR retrieved after
200 training cycles. B) Two trajectories (red curves) performed by the
robot to the fake target after 6 training cycles. C) The robottrajectory
catching the target after 200 training cycles.

VI. D ISCUSSION

Near-range navigation in time-evolving environments re-
quires anticipation of possible changes in the external world
and appropriate adaptation of the agent’s behavior. In this
paper we theoretically developed and experimentally verified
the concept of Compact Internal Representation that offers
efficient solution to the navigation problem. We have shown
that CIR-based neural network consisting of “conscious” and
“subconscious” pathways provides the agent with protocog-
nitive abilities and allows reliable and flexible navigation in
realistic time-evolving environments.

CIRs are static mental maps containing critical spatiotem-
poral information about both static and dynamic environments.
Avoiding effective obstacles and catching effective targets in
such a map ensure avoidance of real obstacles and reaching
real targets in the arena. Thus CIRs provides simple (static) but
flexible solutions for the navigation problem in time-evolving
environments. We have extended the earlier proposed CIR
concept by including mobile targets.

When the agent is involved in a situation never experienced
before the conscious pathway made of two coupled Trajectory
Modeling and Causal Neural Networks generates the CIR of
the situation. We have shown that TMNN can quickly learn
(in less than 50 training cycles in our experiments) different
trajectories and then reliably predict them. In turn the CNN
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indeed guarantees that the obtained CIRs allow the agent to
avoid obstacles and catch the target. In experiments with a
robot platform we obtained the mean shortest distance to
the obstacles and to the target about 150% and 30% of the
agent’s size, respectively. These values are acceptable for most
applications.

We notice that our experimental setup reproduces the
essence of prototypic situations observed in the nature: animals
capture preys and avoid predators. Then survival in quickly
changing external world critically depends on fast decision-
making. To fulfill this requirement we included the subcon-
scious pathway that allows learning experiences and storing
them in associative memory. The latter is facilitated by the
fact that CIRs are static 2D patterns, i.e. constant matrices
or vectors. We described a Recurrent Neural Network that
implements the associative memory and we have shown that
such memory can effectively store the agent’s experiences
(i.e., sensory information and the corresponding CIR). In
experiments about 200 training cycles were necessary to learn
three similar but different dynamic situations. Then if the
agent faces a previously learned situation, the perceptionof
the familiar experience triggers the subconscious fast recovery
of the learned CIR. We have shown that a robot supplied
with the subconscious pathway can quickly retrieve CIRs and
generate trajectories avoiding moving obstacles and reaching
mobile targets. Thus the constructed protocognitive agent,
with acquired experience, is able to navigate in complex
situations adapting itself even to non-predictable changes in
the environment.
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